Logical Properties of Name Restriction

Luca Cardelli Andy Gordon

Microsoft Research

Semantics Lunch 2000-11-06

Properties of Secure Mobile Computation

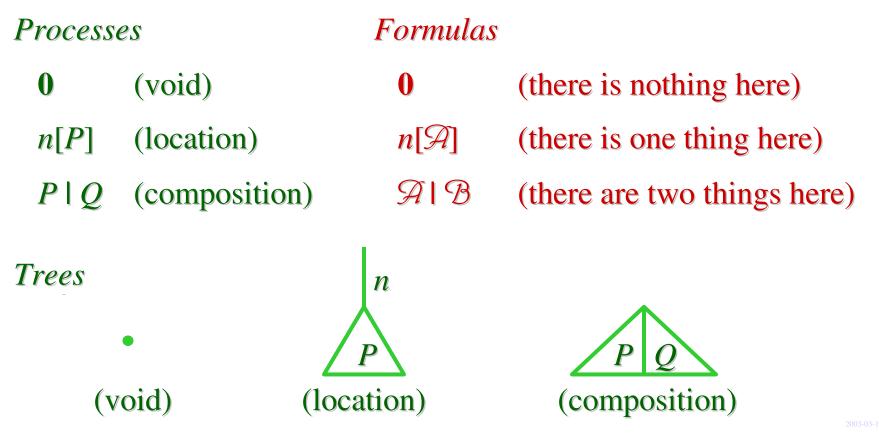
- We would like to express properties of unique, private, hidden, and secret *names*:
 - "The applet is placed in a private sandbox."
 - "The key exchange happens in a secret location."
 - "A shared private key is established between two locations."
 - "A fresh nonce is generated and transmitted."
- Crucial to expressing this kind of properties is devising new logical quantifiers for *fresh* and *hidden* entities:
 - "There is a fresh (never used before) name such that ..."
 - "There is a hidden (unnamable) location such that ..."
 - N.B.: standard quantifiers are problematic. "There exists a sandbox containing the applet" is rather different from "There exists a fresh sandbox containing the applet" and from "There exists a hidden sandbox containing the applet".

Approach

- Use a specification logic grounded in an operational model of mobility. (So soundness is not an issue.)
- Express properties of dynamically changing structures of locations.
 - Previous work [POPL'00].
- Express properties of hidden names. We split it into two logical tasks:
 - Quantify over fresh names. We adopt [Gabbay-Pitts].
 - Reveal hidden names, so we can talk about them.
 - Combine the two, to quantify over hidden locations.
 - "There is a hidden location ..." represented as:
 - "There is a fresh name that can be used to reveal (mention) the hidden name of a location ...".

Spatial Logics

- We want to describe mobile behaviors. The *ambient calculus* provides an operational model, where spatial structures (agents, networks, etc.) are represented by nested locations.
- We also want to specify mobile behaviors. To this end, we devise an *ambient logic* that can talk about spatial structures.

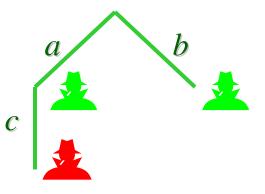


Ambient Logic - Semantics Lunch 4

Mobility

Mobility is change of spatial structures over time.



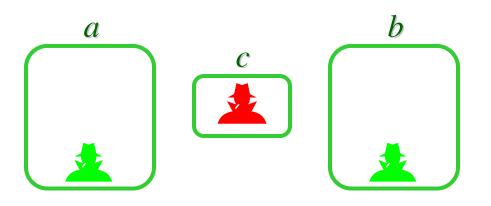


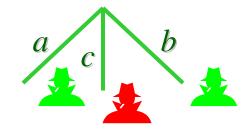
a[*Q* | *c*[*out a. in b. P*]]

| *b*[*R*]

Mobility

Mobility is change of spatial structures over time.





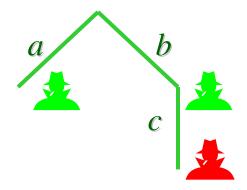
a[Q]

| *c*[*in b*. *P*] | *b*[*R*]

2003-03-19 16:2 Ambient Logic - Semantics Lunch

Mobility

Mobility is change of spatial structures over time.

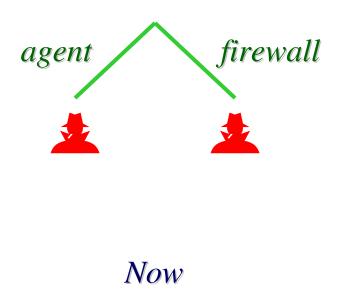


a[Q]

|b[R | c[P]]

Properties of Mobile Computation

- These often have the form:
 - Right now, we have a spatial configuration, and later, we have another spatial configuration.
 - E.g.: Right now, the agent is outside the firewall, ...



Properties of Mobile Computation

- These often have the form:
 - Right now, we have a spatial configuration, and later, we have another spatial configuration.
 - E.g.: Right now, the agent is outside the firewall, and later (after running an authentication protocol), the agent is inside the firewall.

Logical Formulas

$\mathcal{A} \in \Phi ::=$	Formulas	$(\eta \text{ is a name } n \text{ or a variable } x)$				
Τ	true					
$\neg \mathcal{A}$	negation					
$\mathcal{A} \lor \mathcal{A}'$	disjunction					
0	void					
$\eta[\mathscr{A}]$	location	$\mathcal{A}@\eta$	location adjunct			
$\mathcal{A} \mathcal{A}'$	composition	$\mathcal{A} \triangleright \mathcal{A}'$	composition adjunct			
$\eta \mathbb{R} \mathcal{A}$	revelation	$\mathcal{A} \oslash \eta$	revelation adjunct			
$\diamond \mathcal{A}$	somewhere m	somewhere modality				
$\Diamond \mathcal{A}$	sometime mo	sometime modality				
$\forall x. \mathcal{A}$	universal qua	universal quantification over names				

Simple Examples

 $\mathbf{0}: \quad p[\mathbf{T}] \mid \mathbf{T}$

there is a location *p* here (and possibly something else)

2: ∲0

somewhere there is a location p

3: 2⇒□2

if there is a p somewhere, then forever there is a p somewhere

$\boldsymbol{4}: \quad p[q[\mathbf{T}] \mid \mathbf{T}] \mid \mathbf{T}$

there is a *p* with a child *q* here

5: **4**

somewhere there is a p with a child q

Intended Model: Ambient Calculus

$P \in \Pi ::=$	Processes		<i>M</i> ::=	Messages		
(vn) P	restriction		n	name		
0	inactivity		in M	entry capability		
P P '	parallel	Location Trees	out M	exit capability		
<i>M</i> [<i>P</i>]	ambient	11005	open M	open capability		
! P	replication)		3	empty path		
<i>M.P</i>	exercise a ca	apability	<i>M.M</i> '	composite path		
(n). P	input locally, bind to $n > Actions$					
(M)	output local	ly (async)				

 $n[] \triangleq n[\mathbf{0}]$

 $M \triangleq M.0$ (where appropriate)

Reduction Semantics

- A structural congruence relation $P \equiv Q$:
 - On spatial expressions, $P \equiv Q$ iff P and Q denote the same tree. So, the syntax modulo \equiv is a notation for spatial trees.
 - On full ambient expressions, $P \equiv Q$ if in addition the respective threads are "trivially equivalent".
 - Prominent in the definition of the logic.
- A reduction relation $P \rightarrow^* Q$:
 - Defining the meaning of mobility and communication actions.
 - Closed up to structural congruence:

 $P \equiv P', P' \longrightarrow^* Q', Q' \equiv Q \implies P \longrightarrow^* Q$

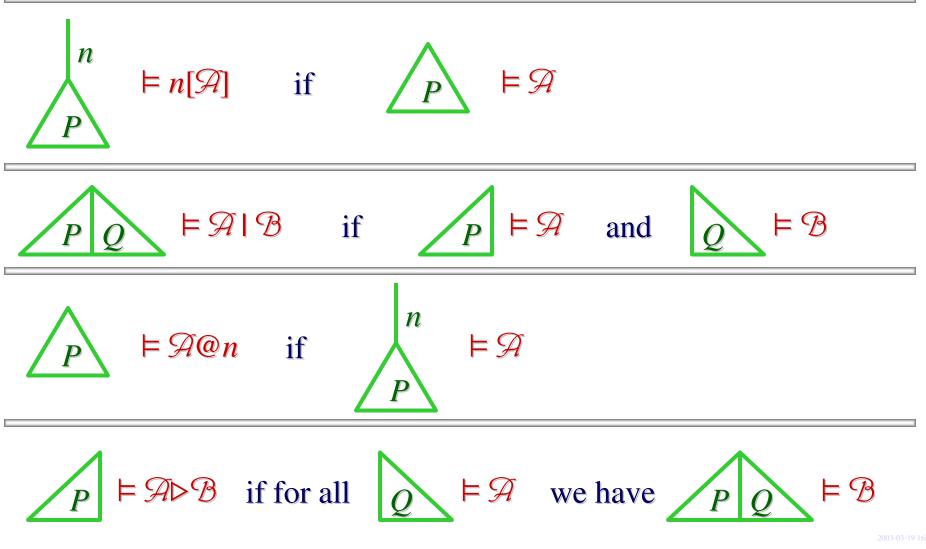
Meaning of Formulas: Satisfaction Relation

$P \models \mathbf{T}$ $P \models \neg \mathcal{A}$ $\triangleq \neg P \models \mathcal{R}$ $P \models \mathcal{A} \lor \mathcal{B}$ $\triangleq P \models \mathcal{A} \lor P \models \mathcal{B}$ $\triangleq P \equiv 0$ $P \models \mathbf{0}$ $P \models n[\mathcal{A}]$ $\triangleq \exists P' \in \Pi. P \equiv n[P'] \land P' \models \mathcal{A}$ $P \models \mathcal{A}@n$ $\triangleq n[P] \models \mathcal{A}$ $P \models \mathcal{A} \mid \mathcal{B}$ $\triangleq \exists P', P'' \in \Pi. P \equiv P' \mid P'' \land P' \models \mathscr{A} \land P'' \models \mathscr{B}$ $P \models \mathcal{A} \triangleright \mathcal{B}$ $\triangleq \forall P' \in \Pi. P' \models \mathcal{R} \Rightarrow P \mid P' \models \mathcal{B}$ $P \models n \otimes \mathcal{A}$ $\triangleq \exists P' \in \Pi. P \equiv (\forall n) P' \land P' \models \mathscr{R}$ $P \models \mathcal{A} \bigcirc n$ \triangleq ($\forall n$) $P \models \mathcal{R}$ $\triangleq \exists P' \in \Pi, P \downarrow^* P' \land P' \models \mathcal{A}$ $P \models \Diamond \mathcal{A}$ $P \models \Diamond \mathcal{A}$ $\triangleq \exists P' \in \Pi. P \rightarrow P' \land P' \models \mathcal{A}$ $P \models \forall x. \mathcal{A}$ $\triangleq \forall m \in \Lambda. P \vDash \mathcal{A} \{ x \leftarrow m \}$

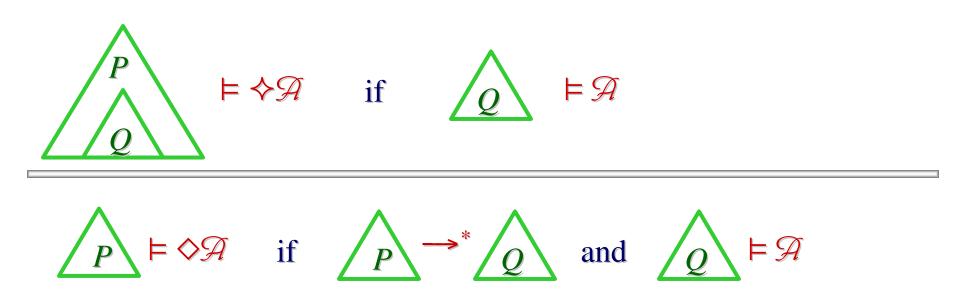
 $P \downarrow P'$ iff $\exists n, P''$. $P \equiv n[P'] \mid P''; \downarrow^*$ is the refl-trans closure of \downarrow

Satisfaction for Basic (rooted unordered edge-labeled finite-depth) Trees

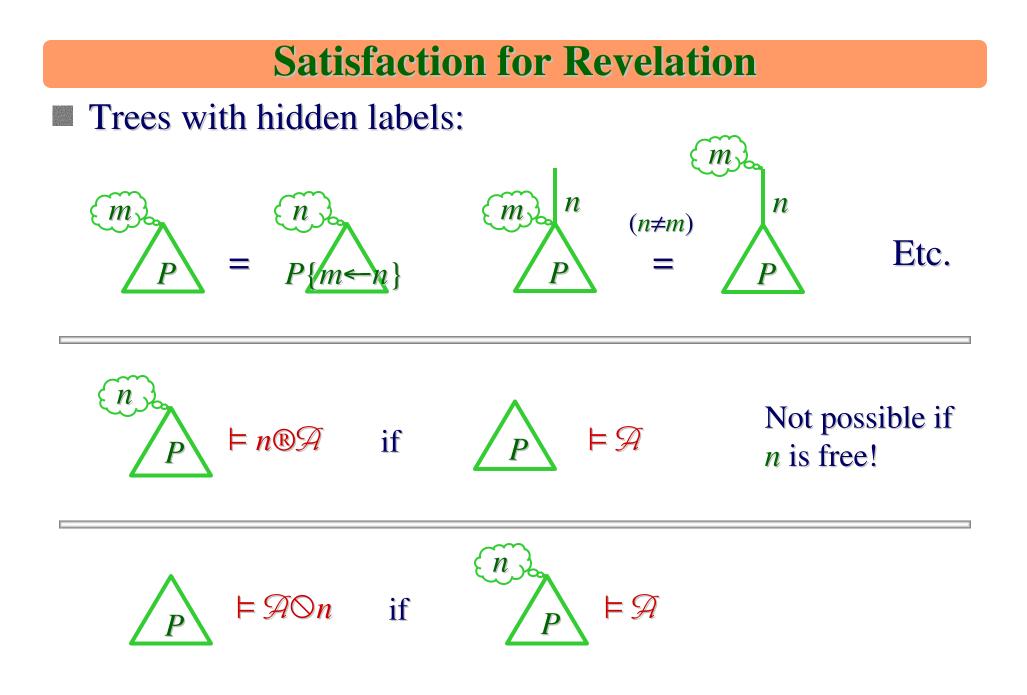
• **⊨ 0**



Satisfaction for Somewhere/Sometime



• N.B.: instead of $\Diamond \mathcal{A}$ and $\Diamond \mathcal{A}$ we can use a "temporal next" operator $\circ \mathcal{A}$, along with the existing "spatial next" operator $n[\mathcal{A}]$, together with μ -calculus style recursive formulas.



Hidden-Name Quantification

Getting fancier:

- $n \mathbb{R} \mathcal{A}$: reveal a hidden name <u>if possible</u> as *n*, and assert \mathcal{A} {*n*}.
- $(vx)\mathcal{A}$: reveal a hidden name as <u>any fresh</u> name x and assert $\mathcal{A}{x}$.

$$\begin{array}{c}
\begin{array}{c}
n\\
\end{array}\\
P\end{array} &\models (\forall x)\mathcal{R} & \text{if} & \swarrow P &\models \mathcal{R}\{x \leftarrow n\} \\
\end{array}$$
with $n \notin fn(\mathcal{R})$

- Design decision: how to define $(vx)\mathcal{A}$, keeping in mind that "freshness" may spill into the logic?
 - *The Obvious Thing*: extend the syntax with $(vx)\mathcal{A}$ and define it directly.
 - *Luis Caires:* Extend the syntax with $(v_x)\mathcal{A}$ and add signatures to keep track of free names, to enforce the side condition $n \notin fn(\mathcal{A})$: $\Sigma \bullet P \models \Sigma \bullet \mathcal{A}$.
 - Us: Retain $n \otimes \mathcal{A}$ and mix it with a logical notions of freshness $\mathcal{N}x.\mathcal{A}$ (one extra axiom schema, no new syntax). We eventually define: $(vx)\mathcal{A} \triangleq \mathcal{N}x.x \otimes \mathcal{A}$.

Restriction (much as in the π -calculus)

(νn)P

- "The name *n* is known only inside *P*."
- "Create a <u>new</u> name *n* and use it in *P*."
- It extrudes (floats) because it represents knowledge, not behavior:

```
(\forall n) P \equiv (\forall m) (P\{n \leftarrow m\})

(\forall n) 0 \equiv 0

(\forall n) (\forall m) P \equiv (\forall m) (\forall n) P

(\forall n) (P \mid Q) \equiv (\forall n) P \mid Q \text{ if } n \notin fn(Q)

a.k.a. (\forall n) (P \mid (\forall n) Q') \equiv (\forall n) P \mid (\forall n) Q'

(\forall n) (m[P]) \equiv m[(\forall n) P] \text{ if } n \neq m

scope extrusion
```

- Used initially to represent private channels.
- Later, to represent private names of any kind: Channels, Locations, Nonces, Cryptokeys, ...

Revelation

$P \vDash n \mathbb{R} \mathcal{A} \quad \triangleq \quad \exists P' \in \Pi. \ P \equiv (\forall n) P' \land P' \vDash \mathcal{A}$

n \mathbb{R} is read, informally:

- *Reveal* a private name as n and check that the revealed process satisfies \mathcal{A} .
- Pull out (by extrusion) a ($\forall n$) binder, and check that the process stripped of the binder satisfies \mathcal{A} .

Examples:

• $n \otimes n \otimes n$ and check the presence of an empty *n* location in the revealed process.

 $(vp)p[\mathbf{0}] \vDash n \otimes n[\mathbf{0}]$ because $(vp)p[\mathbf{0}] \equiv (vn)n[\mathbf{0}]$ and $n[\mathbf{0}] \vDash n[\mathbf{0}]$

Derived Formulas: Revelation

- closed $\triangleq \neg \exists x. \bigcirc x$ $P \vDash \inf \neg \exists n \in \Lambda. n \in fn(P)$
- separate $\triangleq \neg \exists x. @x | @x$ $P \models \inf \neg \exists n \in \Lambda, P' \in \Pi, P'' \in \Pi.$ $P \equiv P' | P'' \land n \in fn(P') \land n \in fn(P'')$
- Examples:
 - $n[] \models On$
 - $(vp)p[] \vDash closed$
 - $n[] \mid m[] \vDash separate$

Revelation Rules

Some mirror properties of restriction: $x \otimes x \otimes \mathcal{A} \rightarrow x \otimes \mathcal{A}$ $x \otimes y \otimes \mathcal{A} \rightarrow y \otimes x \otimes \mathcal{A}$ $x \otimes (\mathcal{A} \mid x \otimes \mathcal{B}) \rightarrow x \otimes \mathcal{A} \mid x \otimes \mathcal{B}$ (scope extrusion) Some behave well with logical operators: $x \otimes (\mathcal{A} \lor \mathcal{B}) \vdash x \otimes \mathcal{A} \lor x \otimes \mathcal{A}$ $\mathcal{A} \vdash \mathcal{B} \xrightarrow{} x \mathbb{R} \mathcal{A} \vdash x \mathbb{R} \mathcal{B}$ Some deal with the adjunction: $\eta \otimes \mathcal{A} \vdash \mathcal{B} \{ \} \mathcal{A} \vdash \mathcal{B} \otimes \eta \}$ $\left(\neg \mathcal{A} \right) \otimes x \dashv \neg \neg (\mathcal{A} \otimes x)$ $\{ (\mathcal{A} \mid \mathcal{B}) \otimes x \vdash \mathcal{A} \otimes x \mid \mathcal{B} \otimes x \}$ $x \mathbb{B}((\mathcal{A} \mid \mathcal{B}) \otimes x) \dashv x \mathbb{B}(\mathcal{A} \otimes x) \mid x \mathbb{B}(\mathcal{B} \otimes x)$

Fresh-Name Quantifier

 $P \models \forall x. \mathcal{A} \quad \triangleq \quad \exists m \in \Lambda. \ m \notin fn(P, \mathcal{A}) \land P \models \mathcal{A} \{x \leftarrow m\}$

- C.f.: $P \models \exists x. \mathcal{A} \text{ iff } \exists m \in \Lambda. P \models \mathcal{A} \{x \leftarrow m\}$
- Actually definable (metatheoretically, as an abbreviation):

 $\forall x.\mathcal{A} \triangleq \exists x. \ x \# (fnv(\mathcal{A}) - \{x\}) \land x \circledast \mathbf{T} \land \mathcal{A}$

Provided we add the axiom schema:

(GP) $\exists x. x \# N \land x \circledast \mathbf{T} \land \mathcal{A} \dashv \vdash \forall x. (x \# N \land x \circledast \mathbf{T}) \Rightarrow \mathcal{A}$ where $N \supseteq fnv(\mathcal{A}) \cdot \{x\}$ and $x \notin N$

Fundamental "freshness" property (Gabbay-Pitts):

 $\begin{aligned} \forall x.\mathcal{A} & \text{iff } \exists m \in \Lambda. \ m \notin fn(P,\mathcal{A}) \land P \vDash \mathcal{A} \{x \leftarrow m\} \\ & \text{iff } \forall m \in \Lambda. \ m \notin fn(P,\mathcal{A}) \Rightarrow P \vDash \mathcal{A} \{x \leftarrow m\} \end{aligned}$

because any fresh name as as good as any other.

- Very nice logical properties:
 - $\forall x. \mathcal{A} \vdash \forall x. \mathcal{A} \vdash \exists x. \mathcal{A}$
 - $\bullet \neg \mathsf{N} x. \mathcal{A} \dashv \vdash \mathsf{N} x. \neg \mathcal{A}$
 - $Vx.(\mathcal{A} \mid \mathcal{B}) \dashv \vdash (Vx.\mathcal{A}) \mid (Vx.\mathcal{B})$
 - $\bullet \Diamond \mathsf{N} x. \mathcal{A} \dashv \vdash \mathsf{N} x. \Diamond \mathcal{A}$

(hint: (GP) \exists for \Rightarrow , \forall for \Leftarrow)

Hidden-Name Quantifier

 $(\nabla x)\mathcal{A} \triangleq \mathsf{V}x.x\mathcal{B}\mathcal{A}$

 $P \vDash (vx) \mathcal{A}$ iff

 $\exists m \in \Lambda, P' \in \Pi. \ m \notin fn(\mathcal{A}) \land P \equiv (\vee m)P' \land P' \vDash \mathcal{A} \{x \leftarrow m\}$

Example: (vx)x[] = Vx.x@x[]

- "for hidden x, we find a void location called x" = "for fresh x, we reveal a hidden name as x, then we find a void location x"
- $(\forall n)n[] \vDash (\forall x)x[]$ because $(\forall n)n[] \vDash \forall x.x \otimes x[]$ because $(\forall n)n[] \vDash n \otimes n[]$ (where $n \notin fn((\forall n)n[])$).

Counterexamples:

- $(\nabla m)m[] \not\models (\nabla x)n[]$ (N.B.: this holds for $(\nabla x)\mathcal{A} \triangleq \exists x.x \otimes \mathcal{A} !)$
- $(\forall n)n[] \mid (\forall n)n[] \nvDash (\forall x)(x[] \mid x[])$
- $(\forall n)(n[] \mid n[]) \nvDash (\forall x)x[] \mid (\forall x)x[]$

A Good Property

A property not shared by other candidate definitions, such as $\exists x.x \otimes \mathcal{A}$ and $\forall x.x \otimes \mathcal{A}$. This is even derivable within the logic:

 $(\forall x)(\mathcal{A}\{n \leftarrow x\}) \land n \otimes \mathbf{T} \dashv n \otimes \mathcal{A} \quad \text{where } x \notin fv(\mathcal{A})$

It implies:

 $P \vDash \mathcal{A} \implies (\forall n)P \vDash (\forall x)(\mathcal{A}\{n \leftarrow x\})$

 $P \vDash (\forall x)(\mathcal{A}\{n \leftarrow x\}) \land n \notin fn(P) \implies P \vDash n \mathbb{R}\mathcal{A}$

 $P \vDash n \otimes \mathcal{A} \implies P \vDash (\forall x)(\mathcal{A}\{n \leftarrow x\})$

A Surprising Property

 $(\nabla x)\mathcal{A} \not\vdash \mathcal{A} \quad \text{for } x \notin fv(\mathcal{A})$

• Ex.: $(\nabla x)(\neg 0 | \neg 0) \not\vdash \neg 0 | \neg 0$

If for a hidden x the inner system can be decomposed into two non-void parts, it does not mean that the whole system can be decomposed, because the two parts may be entangled by restriction:

 $(\forall n)(n[] \mid n[]) \vDash \forall x.x \otimes (\neg 0 \mid \neg 0)$ but: $(\forall n)(n[] \mid n[]) \nvDash \neg 0 \mid \neg 0.$

- This is \mathbb{R} 's fault, not \mathbb{N} 's: with the same counterexample we can show $n\mathbb{R}(\neg 0 | \neg 0) \not\vdash \neg 0 | \neg 0$.
- However, $(vx)\mathbf{0} \vdash \mathbf{0}$.
- Moreover, $\mathcal{A} \vdash (\mathbf{v}x)\mathcal{A}$ for $x \notin fv(\mathcal{A})$.

Forget $n \otimes \mathcal{A}$ and $\mathcal{N}x.\mathcal{A}$, why not just use $(vx)\mathcal{A}$?

Consider:

- $\dashv \vdash (V x. x \mathbb{B} \mathcal{A}) \mid (V x. x \mathbb{B} \mathcal{B})$
- That is:
 - $(\forall x)(\mathcal{A} \mid x \otimes \mathcal{B}) \dashv \vdash (\forall x)\mathcal{A} \mid (\forall x)\mathcal{B}$
- Hence, the scope extrusion rule for $(\forall x)$ still uses \mathbb{R} .
 - Can $(or \circ)$ be expressed via (vx)?
 - Is | useful if we have both \mathbb{R} and $(\forall x)$?
- In any case, we have explored interesting connections between these three operators.

Example: Key Sharing

Consider a situation where "a hidden name x is shared by two locations n and m, and is <u>not known</u> outside those locations".

(vx) (n[@x] | m[@x])

- $P \vDash (vx) (n[@x] | m[@x])$
 - $\Leftrightarrow \exists r \in \Lambda. \ r \notin fn(P) \cup \{n,m\} \land \exists R', R'' \in \Pi. \ P \equiv (\forall r)(n[R'] \mid m[R'']) \\ \land r \in fn(R') \land r \in fn(R'')$
- E.g.: take P = (vp) (n[p[]] | m[p[]]).
- A protocol establishing a shared key should satisfy:

 $\Diamond(\mathbf{v}x)\ (n[@x] \mid m[@x])$

Possible Applications

- Verifying security+mobility protocols.
- Modelchecking security+mobility assertions:
 - If *P* is !-free and \mathcal{A} is \triangleright -free, then $P \vDash \mathcal{A}$ is decidable.
 - This provides a way of mechanically checking (certain) assertions about (certain) mobile processes.
- Expressing mobility/security policies of host sites. (Conferring more flexibility than just sandboxing the agent.)
- Just-in-time verification of code containing mobility instructions (by either modelchecking or proof-carrying code).

Conclusions

- The novel aspects of our logic lie in its explicit treatment of space and of the evolution of space over time (mobility).
- We can now talk also about fresh and hidden locations.
- These ideas can be applied to any process calculus that embodies a distinction between spatial and temporal operators, and a restriction operator.
- Our logical rules arise from a particular model. This approach makes the logic very concrete (and sound), but raises questions of logical completeness.

Logical Properties of Name Restriction